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This paper proposes a design methodology based on the application of genetic algorithms (GA) to ﬁnd a minimal-cost topological

structure of MPLS-based networks. MPLS technology is currently deployed in designing the backbone infrastructure of service provider

networks whereas other parts of the network are still operated using the traditional IP protocol. This makes the overall topological struc-

ture of MPLS-based networks naturally breaks into two prime sub-problems: access network design and backbone network design. The

ultimate goal is to identify the locations of label-edge routers and label-switching routers, and to determine the interconnection links and

their capacities to accommodate expected traﬃc demands. The locations of label edge routers depend on the demands of a given set of

terminal networks which in turn aﬀect the design of the backbone network. This problem is a highly constrained NP-hard optimization

problem for which exact solution approaches do not scale well. We ﬁrst present a multilevel design model that divides the optimal topol-

ogy design into a set of linear programs. Then, we propose GA-based meta-heuristics for solving them. We also discuss the impact of

encoding methods and genetic operators and parameters on the performance. Numerical results for the considered cases show that the

proposed methodology is eﬀective and gives optimal or close to optimal solutions as compared with the exact branch and bound method.
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1. Introduction

Multiprotocol-label switching (MPLS) [1,2]
provides a

promising approach for supporting diﬀerentiated quality-

of-service (QoS) required for multimedia delivery over

the Internet. It incorporates a wide-range of capabilities

that combine the merits of both circuit-switched and

packet-switched networks. One of the current applications

of MPLS technology is in the backbone of service provider

networks. Building a cost-eﬀective network that meets its

business and technical goals is a daunting endeavor. This

problem is a highly constrained optimization problem for

which exact solution approaches do not scale well. Over

years, network researchers and practitioners have devel-

oped several models and heuristic algorithms to reduce
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the computational intricacy of the problem. The goal is

to identify geographical locations of nodes (concentra-

tors/multiplexers, switches, routers, etc.), network connec-

tivity and link capacity to accommodate expected traﬃc

demands
with
reasonable
cost-performance
tradeoﬀ.

Unlike other published work on topology design, MPLS

has two distinct sets of nodes: label-edge routers (access

nodes) and label-switching routers (transit nodes) which

complicate the problem further. In this paper, we focus

on hierarchical network design in which the backbone

infrastructure is implemented using MPLS technology

and low level networks utilize the traditional IP protocol.

We also assume that the backbone and the low level net-

works are owned and operated by independent institutions.

Under this assumption, the design of the entire network

can be divided into two independent sub-problems. First,

an access network is designed to accommodate the traﬃc

demands of a given set of terminal networks. Second, a
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service provider builds a cost-eﬀective infrastructure to

connect the selected access nodes. While traﬃc demands

in low level networks are typically centralized, the back-

bone network traﬃc demand is generally distributed and

hence the backbone topology is arbitrarily chosen [3]. After

describing the formal representation of these sub-problems,

we present solution approaches based on genetic algo-

rithms. We also discuss the impact of encoding methods

and genetic operators and parameters on the performance.

The eﬀectiveness of the proposed methodology is evaluated

for a number of examples and the results are benchmarked

to optimal solutions obtained using the exact branch and

bound method. As mentioned in
[4], planning hierarchi-

cally is easier than optimizing the network as a whole since

diﬀerent parts of the hierarchy can be treated indepen-

dently by diﬀerent staﬀ members who maintain and modify

the network. In addition, a minimum cost for the entire

network can still be reached by applying the design at dif-

ferent levels iteratively [3].

The rest of this paper is organized as follows. In the next

section, we ﬁrst survey related work on network topology

design. Then, we review some architectural aspects of

MPLS networks in Section
3
and formulate the design

problem in Section
4. The proposed solution based on

genetic algorithms is presented in Section 5. In Section 6,

we provide simulation results and compare the attained

solutions with the exact optimum. Finally, Section 7 con-

cludes the paper and highlights some possible future

research directions.

2. Related work

Network planning and optimal topological design has

been an area of extensive research since the early days of

computer networks [5]. Several studies have been published

on topology design for circuit-switched and packet-

switched networks
[6–8]. In general, the network design

problem is formulated as an optimization problem with

the objective of minimizing (or maximizing) a cost function

(or a performance metric) subject to a set of constraints.

Diﬀerent performance metrics can be used such as average

packet delay, average hop count, link utilization, etc. Con-

straints can vary based on geographical constraints, tech-

nology
constraints,
performance
constraints,
etc.
A

number of mathematical programming techniques such as

linear programming, integer programming and mixed-inte-

ger programming are commonly used for solving it.

Dealing with such problem in today’s large-scale net-

works is a complex endeavor. Since the complexity of this

problem is known to be NP-complete, several heuristic

algorithms based on simulated annealing, evolutionary

strategies and genetic algorithms have been proposed in

the literature to a number of related optimization problems

[9–11]. Although simple genetic algorithms were intro-

duced for unconstrained numerical function optimization,

several approaches have been proposed for extending them

to handle constraints
[12]. The terminal assignment prob-




lem, for clustering terminals and connecting them to con-

centrators, is addressed in [13] using heuristic approaches

based on greedy algorithms and genetic algorithms. In

[14], a heuristic approach based on genetic algorithms is

described for solving the topology design of local-area net-

works with the objective of minimizing the average net-

work delay. Designing a campus network topology is

addressed in
[15]
using an evolutionary algorithm based

on fuzzy simulated evolution with Tabu search. In
[16],
an evolutionary algorithm has been applied to telecommu-

nication network dimensioning to ﬁnd values of link capac-

ities. One of the best-known network optimization

problems that is used for designing backbone networks is

minimum-spanning tree (MST) problem. In [17], GAs have

been used for solving a variation of MST called degree-

constrained MST. The study in [18] has demonstrated the

topology design of B-ISDN networks using genetic algo-

rithms. The same problem is again addressed in the com-

munications
letter
[19]
using
steady
state
genetic

algorithms. Unlike the work we consider in this paper,

the authors assumed uncapacitated problem with given

node locations and all nodes are of the same type. A com-

monly used heuristic approach for solving the node loca-

tion problem is known as Add-Heuristic
[6]. The

topology design of MPLS core network was considered

in [20] and formulated as a mixed-integer program. Since

this problem is known to be NP-complete for which there

is no algorithm known to run in polynomial time, the

authors proposed a heuristic approach based on branch-

and-bound (BB) algorithm for solving it. In [21], the author

proposed greedy randomized adaptive search procedures

(GRASP) for solving the topological design problem of

MPLS networks. In this study, we investigated another

heuristic approach based on genetic algorithms for solv-

ing it; preliminary results have been partially published in

[22].

3. MPLS network architecture

MPLS is built on former ideas of tag switching and label

switching to expedite packet forwarding and traﬃc engi-

neering in packet-switched networks such as the Internet

[1]. A typical MPLS network architecture is illustrated in

Fig. 1. The MPLS network topology can be divided into

MPLS core and MPLS edge. A router supporting MPLS

at the edge is termed as a Label Edge Router (LER) where

incoming packets are classiﬁed into Forwarding Equiva-

lence Classes (FECs). This classiﬁcation is based on the

network-layer information contained in the packet and

any other control information available at the router such

as balancing supported QoS and network utilization. Pack-

ets in the same FEC are forwarded over the same path and

are treated in the same manner. A path from an ingress

LER router to an egress LER router is termed as Label

Switching Path (LSP) or tunnel. Intermediate routers are

MPLS-capable routers and are called Label Switching

Routers (LSRs).
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Fig. 2. MPLS layered topology design.

Fig. 1. A typical MPLS network architecture.

LSR nodes are similar to LER nodes but they are either

not capable of analyzing the network-layer headers at all,

or not capable of doing that at adequate speed. LER nodes

are the connection points between non-MPLS and MPLS-

capable routers hence they are also called access nodes.

LSR nodes are capable of doing label lookup and replace-

ment and are called transit nodes. The label distribution

protocol (LDP) or the resource reservation protocol

(RSVP) can be used to set up and manage tunnels.

4. Methodology and problem formulation

In this section, we describe a hierarchical design meth-

odology and present a mathematical programming formu-

lation for the optimal topology design of MPLS-based

networks. For given expected traﬃc demands, the objective

is to determine the optimal location of nodes, and the inter-

connection links and their capacities to minimize the over-

all costs while satisfying a number of business and technical

constraints. To simplify the design problem, we use a two-

layer approach, as illustrated in
Fig. 2, to handle these



objective now is to ﬁnd a best assignment of access net-

works (terminals) to access nodes (LERs) in order to min-

imize the connection costs. Although the associated link

cost can be based on distance, delay, capacity, etc., in the

numerical examples we use Euclidean distance. Let

I = {1, 2, . . . , N}
be
the
set
of
terminals
and

J = {1, 2, . . . , M} be the set of access nodes. We deﬁne

xij= 1 if terminal
i 2 I
is connected to access node j 2 J

and
xij= 0 otherwise. The cost of connecting terminal

i 2 I to access node j 2 J is denoted by cij. A terminal must

be assigned to only one access node and each access node

can handle up to a certain number of terminals as given

by the vector
k = (k1, k2. . . ,kM). This problem is known

as terminal assignment (TA) problem and is usually

formulated as a combinatorial optimization problem.

Table 1 summarizes the TA formulation as a 0/1 integer

program.

Terminals may have diﬀerent capacity requirements and

in such case the capacity constraints will be modiﬁed as

follows:

XN
interrelated questions separately and combine the solutions

to answer the overall design problem. We start by cluster-


iј1


bixij6 kj8j 2 J ;

ing terminals or access networks and assigning them to a

subset of a given set of candidate locations for access nodes

(LERs). Then, we consider the problem of identifying loca-

tions of LSR nodes and determining the interconnection

links and their capacities between LSR nodes and between

LER nodes and LSR nodes.

4.1. Terminal assignment (TA)


where biis the bandwidth required by terminal i and kjis

the maximum bandwidth of node j. Additional constraints

may be imposed such as type of service available at each

node or link.

Table 1

Integer program formulation for terminal assignment

PN
minF рxЮ јPMjј1

subject to


iј1cij xij

(1a)

Before looking at the general problem of identifying

access node locations and assigning terminals to them, we


PM
PN

jј1xijј1; 8i 2 I


(1b)

ﬁrst address the simpliﬁed assignment problem where

access nodes are given and are assumed to be ﬁxed. The


iј1xij6kj; 8j 2 J

xij2 {0, 1}, "i 2 I; "j 2 J


(1c)

(1d)
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4.2. Access node location (ANL)

This problem is similar to TA except that the locations

of LER nodes are not known but only a candidate set of

possible locations, J, is given. The goal is to select a subset

of J
at which LER nodes are installed and to determine

links connecting terminals to them in order to minimize

the overall installation costs. In addition to link installation

costs, there is a node installation cost for each selected

location. The cost information is given. Again, this prob-

lem can be formulated as a combinatorial optimization

problem as summarized in Table 2. We introduced a new

set of decision variables,
yj2 {0, 1}, such that
yj= 1 if we

decided to install an LER at location
j 2 J; otherwise

yj= 0. Also the objective function is modiﬁed to include

nodal costs as follows:

(
)



demands while satisfying a number of speciﬁed constraints

such as maximum link utilization, link capacity, number of

interfaces at each node, diﬀerent levels of service quality in

terms of delay, bandwidth, hop count, etc. The mathemat-

ical formulation of this topology design problem is stated

in Table 3 as a mixed-integer program.

The input data to the optimization procedure consists

of:

• A set of LER nodes I = {1, 2, . . . ,N} described by loca-

tions (x1, y1), . . . , (xN, yN).

• A set of demands,
D, described by the vector
h = (hd:

d 2 D) that speciﬁes the demand volume between each

source–destination pair of LER nodes.

• A set of candidate locations
J = {1, 2, . . . ,M} of LSR

nodes described by coordinates (x1, y1), . . . , (xM, yM).

• A set of all possible links, E.

min


XM

jј1


gjyjю


XM
XN
jј1
iј1


cijxij

;


• Admissible paths for realizing the demand between each

pair of access nodes (deﬁned by link-path indicator

matrix
u = (uedp:
e 2 E,
d 2 D,
p 2 Pd)
of
order

where
gjis the installation cost for an LER at location

j 2 J.

Similarly, we can assume terminals have diﬀerent band-

width requirements and in such case the capacity con-

straints will be modiﬁed to be,

XN

jEj · jDj Ж jPdj where uedp= 1 if path p for demand d is

passing through link e; otherwise uedp= 0. Pdis the set

of paths for realizing demand d for all d 2 D.

• Transit node incidence matrix / = (/ev: "e 2 E, "v 2 J)

of order jEj · jJj where /ev= 1 if link e 2 E is connected

to the transit node v 2 J.

iј1


bixij6 kjyj8j 2 J:


• Link capacity/bandwidth vector b = (be: "e 2 E) repre-

sents upper bound on link capacity if it exists; otherwise

the capacity is zero.

4.3. Transit node location and connectivity (TNLC)

After the locations of LER nodes have been identiﬁed

and connecting access networks to them, it is required to

provide connectivity between LER nodes to accommodate

the expected traﬃc demand. Hence, in this section we

assume that the number and locations of LER nodes are

given. There is a candidate set of possible transit node loca-

tions. The expected traﬃc demand between each pair of

source–destination LER nodes and the admissible paths

are also given. Without loss of generality, we assume

demand is bidirectional. Installing a transit node at a spe-

ciﬁc location incurs a ﬁxed installation cost. Connecting

two nodes has a ﬁxed link installation cost and a varying

cost depending on the link load. Our goal here is to deter-


• Transit node maximum degree k = (kv: "v 2 J).

• Transit node location cost vector g = (gv: "v 2 J) repre-

sents ﬁxed installation costs.

• Link ﬁxed installation fee and capacity-dependent costs:

f = (fe:
"e 2 E) and
c = (ce:
"e 2 E) where
c is deﬁned

per capacity unit. The output of the procedure is a min-

imum-cost network deﬁned by a tuple (n, x, x, y) where

• n is a vector of binary values such that nv= 1 if a transit

node is installed at location v 2 J; otherwise, nv= 0.

• x is a vector of binary values such that xe= 1 if link

e 2 E is installed; otherwise, xe= 0.

• x = (xdp: "d 2 D, p 2 Pd) is a non-negative real-valued

ﬂow pattern for realizing demands over admissible paths

such that

X

mine (1) the optimal locations of LSR nodes, (2) the inter-

connections between all nodes, (3) ﬂow pattern for

realizing each demand. An optimal solution to this prob-


p


xdpј hd; xdp2 R;
8d 2 D:

lem is a minimum-cost topology that accommodates

Table 2

Integer program formulation for access node location (ANL)

PN

Table 3

Mixed integer program formulation for transit node location and

connectivity (TNLC)

min F рn; x; x; yЮ јPvgvnvюPeЅfiexeю ceye(3a)

subject to

minF рx; yЮ јPMjј1gjyjюPMjј1


iј1cijxij

(2a)


P


pxdpјhd;
8d 2 D


(3b)

subject to


P P


(3c)

PM
jј1xijј1; 8i 2 I


(2b)


Pd

puedpxdpј ye;
8e 2 E


(3d)

PN
iј1xij6kjyj; 8j 2 J

xij2 {0,1}, "i 2 I; "j 2 J

yj2 {0, 1}, "j 2 J


(2c)

(2d)

(2e)


e/evxe6kvnv;
8v 2 J

ye6 bexe, "e 2 E

xe2 {0,1}, "e 2 E

nv2 {0,1}, "v 2 J


(3e)

(3f)

(3g)
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• y = (ye:
"e 2 E,
ye2 R) is a non-negative real-valued

vector representing link loads.

5. GA-based solution

This section explores the application of genetic algo-

rithms for solving the optimization problems formulated

in the previous section. Genetic Algorithms are one of

the most powerful and broadly applicable guided stochas-

tic search techniques for global optimization. These proce-

dures are based on the principles and mechanisms of

natural selection and genetic sciences of biological organ-

isms. A genetic algorithm starts oﬀ with a randomly gener-

ated population of individuals (also called chromosomes).

Each individual represents a solution to the optimization

problem and is associated with a ﬁtness value. New solu-

tions are formed by recombining and perturbing existing

solutions in the current population based on their ﬁtness

to survive. The algorithm repeatedly applies selection,

crossover, mutation and replacement operators until a sat-

isfactory solution is found or a maximum number of itera-

tions is reached. Over time, the ﬁttest individuals will have

a better chance of surviving and the least ﬁt individuals will

be eliminated. Unlike other optimization techniques,

genetic algorithms make few assumptions about the prob-

lem domain and thus can be applied to a wide spectrum of

problems.

The link between genetic algorithms and the optimiza-

tion problem lies in the encoding procedure to represent

decision variables (phenotypes) into chromosomes (geno-

types) and computing ﬁtness values. Fitness values are

non-negative values derived from the objective function

values. Constraints can be handled in diﬀerent ways

[12]. A direct approach is to devise a representation

and genetic operators that ensure feasibility. But this is

not always obvious and makes the solution problem

dependent. Alternatively, we can drop infeasible solu-

tions or use a repair function to transform an infeasible

solution into a feasible one. Finally, we can allow infea-

sible solutions to be in the population but penalize them

by adding a penalty term to the objective function. After

termination the ﬁttest chromosome is decoded back into

the corresponding phenotype. In addition to encoding

and ﬁtness evaluation that are problem dependent, the

design of a GA-based solution involves other issues

including selection, crossover, mutation and replacement

strategies.

Selection. Selecting parent chromosomes for mating can

be done in various ways. We use a common approach

called
weighted roulette-wheel selection
where members

are selected randomly but proportional to their relative ﬁt-

ness values. This gives credit for good members and bal-

ance required exploration of new regions in the solution

space. In the following, we assume a cost minimization

problem. Hence, a good chromosome is one that has low

relative ﬁtness.



Crossover. Two selected parents from the population are

combined to produce two new individuals (oﬀspring) by

partially exchanging their genes. For example, in single-

point crossover, oﬀspring are formed by swapping bits

after the crossover point between the two parents. The

motivation is that two good parents are more likely to pro-

duce better children even than themselves. The crossover is

controlled by the crossover probability, pc, which is typi-

cally in the range [0.7–.95].

Mutation.
One or more genes of a chromosome are

changed randomly to allow other solutions to be explored.

This perturbation improves the performance of GA and

prevents a premature convergence to a local minimum.

The mutation rate greatly aﬀects the performance of the

algorithm. Too much mutation badly aﬀects the results.

Typical values for the mutation probability,
pm, are in

the range [0.01–0.2].

Replacement.
A new population is formed by replac-

ing individuals in the current population with the

newly generated oﬀspring. A single scalar called gener-

ation gap,
ggap 2 [0, 1], is used to control the number

of replaced individuals. In one implementation, a new

generation of size equal to the population size entirely

replaces the current population (ggap = 1). This is

known as generational genetic algorithms (GGA). A

variation of this approach is to allow the best individ-

uals to propagate from the current population to the

new population. This is known as GGA with elitism.

If only one or two individuals are replaced at each

iteration, GA is said to be incremental or steady state

(SSGA).

In the following, we show how to encode and evaluate

individuals in the population for each part of the topology

design problem.

5.1. GA-based terminal assignment (GATA)

Encoding method.
The ﬁrst step in designing a genetic

algorithm solution is to devise a suitable encoding scheme.

A solution to the TA problem is represented by an integer

vector x = (x1, x2,. . . , xN) where xi= j is the jth LER node

to which the ith terminal is assigned. This encoding method

guarantees that each terminal is assigned to only one LER

node. For a solution vector, x, terminals assigned to the jth

LER are determined by the set {i: xi= j}. A feasible solu-

tion is a vector,
x, such that the number of terminals

assigned to each LER is not exceeding its capacity (node

degree), i.e., j{i: xi= j}j 6 kj, "j 2 J. This problem can be

solved using binary string representation as well which

can be done in diﬀerent ways. For example, each integer

can be represented using a ﬁxed number of bits equal to

Шlog2Mш. The chromosome length is thus
N Шlog2Mш. In

such case, many infeasible solutions are generated because

a terminal can be connected to more than one LER which

is not allowed. These infeasible chromosomes need to be

penalized to reduce their chance in participation in the evo-

lution process. In another representation a chromosome

E-.S.M. El-Alfy / Computer Communications 30 (2007) 2010–2020
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5.3. GA-based transit node location and connectivity

only one bit equal to 1 indicating the LER to which the ter-
(GATNLC)

minal is connected. But again this binary representation
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does not ensure feasibility.

Fitness evaluation. Each chromosome is assigned a ﬁt-

ness value derived from the objective cost function. If
x

is a feasible solution, then

XN

f рxЮ ј
cixi

iј1

If infeasible solutions can exist in the population, we

use a penalty function to handicap them. The ﬁtness

value is deﬁned using a modiﬁed objective function as

given by

f~рxЮ ј f рxЮ ю pрxЮ;

where p(x) deﬁnes the penalty value in terms of node over-

loads and/or number of unsatisﬁed constraints. If we deﬁne

the load of node j
at solution x
to be
gj(x) then the node

overload is max(0, gj(x)
kj) and the number of unsatisﬁed

constraints is
j{j: max(0, gj(x)
kj) > 0}j. In our experi-

mental work, we deﬁned p(x) using one of the following

formulas:


As mentioned in Section 4.3, a solution is deﬁned by a

tuple (n, x, x, y). This solution will be represented as a bin-

ary string corresponding to the ﬂow pattern, x,

x ј рxd: d ј 1; . . . ; DЮ;
xdј рxdp: p ј 1; . . . ; PdЮ:

The link load vector y, and the node and link status vectors

(n and x) are implicitly encoded in the ﬂow pattern since

we can compute them from x as follows:

• The link load is obtained by adding all ﬂows passing

through the link,
y = x Ж uT, where
uTis the transpose

of matrix u,

• If the carried load on the link is not zero, then the link

should exist, i.e., x = (y „ 0),

• If a link is provided then its end nodes are,

n = (x Ж /T„ 0) where /Tis the transpose of matrix /.

The ﬁtness value is deﬁned using the objective function

value if only feasible solutions are allowed in the popula-

tion. Otherwise, we use a penalty function in which the

penalty factor increases over generations, t, as follows:

Xm

p1рxЮ ј djfj : maxр0; gjрxЮ  kjЮgj;

XM

p2рxЮ ј d
maxр0;gjрxЮ  kjЮ;

jј1

XM


pрxЮ ј рCtЮa
where

(

GiрxЮ јЅ


iј1


GiрxЮ;

maxр0; giрxЮbfor i ј 1; . . . ; q

p3рxЮ ј d
maxр0;gjрxЮ  kj Ю  jfj : maxр0;gjрxЮ  kjЮgj;

jј1


jgiрxЮjc

for i ј q ю 1; . . . ; m

"
#


m is the number of constraints,q is the number of inequality

p4рxЮ ј


XM

jј1


maxр0;gjрxЮ  kjЮ юd


 jfj : maxр0;gjрxЮ  kjЮgj:


constraints,m
q is the number of equality constraints,t is

generation count,C, a, b, c are penalty parameters,gi(x) is

the diﬀerence between the left- and right-hand sides of con-

The penalty factor d
is set to a large value so that each

infeasible solution becomes worse than the feasible ones.

When all constraints are satisﬁed (i.e., a feasible solution),

the penalty will be zero and the ﬁtness value will be the

same as the objective function value of the corresponding

phenotype.

5.2. GA-based access node location (GANL)

A solution to this problem is represented similarly as

in GATA using integer vector
x = (x1, x2, . . . , xN). The

decision vector, y, is implicitly encoded. When evaluating

a chromosome, x, we ﬁrst ﬁnd y then if the node load is

zero, it is not installed and its installation cost is not

added to the objective function value. Otherwise its

installation cost is added to the objective function value.

In our experimental work, whenever we allow infeasible

solutions to be in the population, we use penalty func-

tions similar to those used in GATA. After the program

terminates, we determine the vector
y
from the best

chromosome.


straint i.

6. Numerical examples

In this section, we present a number of numerical exam-

ples to test the eﬀectiveness of the proposed approach. The

proposed solutions were implemented and simulations

were carried out using MATLAB and the genetic algo-

rithms toolbox [23].

6.1. Terminal assignment

We tested the proposed method GATA for assigning

terminals to LER nodes by using 25 terminal networks

and 5 LER nodes with capacities deﬁned by the vector

k = (8, 6, 4, 3, 4). The locations of terminals and LER nodes

are randomly generated on a square layout of size

200 · 200 as depicted in
Fig. 3(a). The assignment cost is

taken as the length of the link connecting a terminal to

an LER node (Euclidian cost). An optimal solution is

found using the branch-and-bound (BB) method which is
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Fig. 3. (a) Randomly generated terminal and LER locations. (b) An optimal assignment found using BB method.

implemented in MATLAB for solving binary integer pro-

gramming problem as shown in
Fig. 3(b) for which the

objective function value is 1436.2373. It is clear that each

terminal is assigned to only one LER and the number of

terminals connected to an LER does not exceed its capacity

(node degree). Then we applied GATA to the same exam-

ple with the following settings: population size
ps= 100,

single-point crossover with crossover rate pc= 0.8, muta-

tion rate
pm= 0.01, and ﬁtness-based replacement with

generation gap
ggap = 0.02. The initial population starts

oﬀ with a set of feasible solutions and during reproduction

infeasible oﬀspring are dropped. The corresponding

changes of the best and average ﬁtness values versus gener-

ations are shown in Fig. 4(a) and the best assignment found

is illustrated in
Fig. 4(b). We can see that the algorithm

converges quickly to the best solution for these parameter

settings. After 10,000 generations, the objective function

value of the best solution is 1436.2371 which is exactly

equal to the optimal solution found using the BB methods.

In the following experiments, we allowed infeasible solu-

tions to exist in the initial population and during reproduc-




tion but penalize them. After generating an initial

population uniformly random, we evaluate each chromo-

some and penalize it if it represents an infeasible solution.

Also during reproduction, infeasible oﬀspring are penalized

and inserted in the new generation. As mentioned before

the penalty function makes the ﬁtness value worse and

reduces the likelihood of selecting these chromosomes for

mating. We ﬁrst deﬁned the penalty function as
p4(x)

deﬁned in Section 5.1 with d = 400. The best and average

ﬁtness variations and the best assignments are shown in

Fig.
5
for
which
the
objective
function
value
is

1465.4168. Comparing it with the optimal solution, it is

only 2% higher than the optimum. We can also see that

the convergence becomes slower than if we drop infeasible

solutions. We tried to use other penalty functions such as

p3(x) with
d = 1,000. From the results shown in
Fig. 6,

we can that it gives better solution (less than 0.04% higher

than the optimum). We carried out several other experi-

ments with diﬀerent parameter settings and penalty func-

tions
[24]. It is found in some implementations of the

GA-based solution that the results are either optimal or

Fig. 4. Using GATA and discard infeasible solutions: (a) The changes of best and average ﬁtness values vs. generations. (b) The best assignment found.
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Fig. 5. Using GATA and a penalty function: (a) The changes of best and average ﬁtness values vs. generations. (b) The best assignment found.

Fig. 6. Using GATA and another penalty function: (a) The changes of best and average ﬁtness values vs. generations. (b) The best assignment found.

very close to optimal. Also a proper selection of the param-

eters can improve the results.

6.2. Access node locations

We carried out a number of experiments to test the

performance of GANL by using a randomly generated

network that has 20 possible access nodes and 100 termi-

nals. The geographical locations of terminals and possible

nodes are randomly generated on a 200 · 200 grid as

shown in
Fig. 7(a). The connection costs are computed

as the Euclidian distance between the terminal and access

nodes. The access node installation costs are generated

randomly to be between 50 and 200. Using BB method,

an optimal solution is found to be as shown in

Fig. 7(b) with optimal cost of 4328.1345. Using GANL

with ps= 500, pc= 0.8, pm= 0.02 and ggap = 0.1, the best

solution that satisﬁes the constraints and has minimal cost




is shown in
Fig. 8
with cost equal to 4504.045. We can

clearly see that it is only 4% higher than the optimal cost.

6.3. Transit node locations and connectivity

To test our approach for solving TNLC, we considered

a hypothetical backbone network with demand require-

ments as shown in Fig. 9. It is required to identify the loca-

tion of transit nodes, link connectivity, link loads and the

demand realization vector x. This problem is formulated

as a mixed-integer program (MIP) and solved using

LINGO [25]. An optimal solution is found to be as illus-

trated in Fig. 10(a) with objective function value of 682.

Then we carried out the solution using GATNLC with

the following parameter settings:
ps= 200,
pc= 0.8,

pm= 0.1 and ggap = 0.05. In this experiment, only solu-

tions that satisfy all inequality constraints and approxi-

mately the equality (demand) constraints are allowed to
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Fig. 7. ANL problem (a) Randomly generated terminal and possible node locations. (b) An optimal solution using BB method.

Fig. 8. Using GANL: (a) Changes of best and average ﬁtness vs. generations. (b) The best solution found.

3

demand

topology



2


1 0



n6


5



n3

8



1

n2


n4


n7


n5


n1
Fig. 9. A hypothetical backbone network.

be in the population. Using penalty functions as deﬁned in

Section
5.3
to penalize infeasible solutions, the variations

of the best and average ﬁtness values are shown in




Fig. 10(b) and upon termination the best solution corre-

sponds to an objective function value of 696 which is

2.1% higher than the optimal.




n2



n6



n7



E-.S.M. El-Alfy / Computer Communications 30 (2007) 2010–2020

n3
n5
n1



2019

Fig. 10. (a) An optimal solution using LINGO. (b) Changes of best and average ﬁtness vs. generations using GATNLC.

7. Conclusions and future work

In this study, the application of genetic algorithms to the

topological design of MPLS-based networks is demon-

strated. The proposed approach is tested using a number

of hypothetical randomly generated networks. The simula-

tion results show that the proposed method is eﬀective and

can produce optimal or close-to-optimal solutions. The

accuracy of the solution obtained is aﬀected by the GA

parameter settings. Deciding on proper parameter settings

is problem-dependent and is still open for research.

Another important problem that needs to be investigated,

especially when the entire hierarchical network is owned

and operated by one institution, is the uniﬁed model.

Under this model, the consideration of the dependence

between diﬀerent hierarchical levels during the design can

lead to more cost-eﬀective solutions. Finally, a detailed

comparative study of various heuristic approaches for the

design of hierarchical networks is worthwhile.
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